EconPapers    
Economics at your fingertips  
 

Gevrey semiglobal solvability for a class of elliptic vector fields with degeneracies

Gabriel Araújo, Adalberto P. Bergamasco and Paulo L. Dattori da Silva

Mathematische Nachrichten, 2023, vol. 296, issue 8, 3153-3172

Abstract: We deal with Gevrey solvability of a class of complex vector fields defined on Ω=R×S1$\Omega = \mathbb {R}\times S^1$, given by L=∂/∂t+(a(x,t)+ib(x,t))∂/∂x$\mathcal {L} = \partial /\partial t+(a(x,t)+ib(x,t))\partial /\partial x$, b≢0$b\not\equiv 0$, near the characteristic set Σ={0}×S1$\Sigma = \lbrace 0\rbrace \times S^1$. Diophantine conditions appear in a natural way in our results.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202100235

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:8:p:3153-3172

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:8:p:3153-3172