Gevrey semiglobal solvability for a class of elliptic vector fields with degeneracies
Gabriel Araújo,
Adalberto P. Bergamasco and
Paulo L. Dattori da Silva
Mathematische Nachrichten, 2023, vol. 296, issue 8, 3153-3172
Abstract:
We deal with Gevrey solvability of a class of complex vector fields defined on Ω=R×S1$\Omega = \mathbb {R}\times S^1$, given by L=∂/∂t+(a(x,t)+ib(x,t))∂/∂x$\mathcal {L} = \partial /\partial t+(a(x,t)+ib(x,t))\partial /\partial x$, b≢0$b\not\equiv 0$, near the characteristic set Σ={0}×S1$\Sigma = \lbrace 0\rbrace \times S^1$. Diophantine conditions appear in a natural way in our results.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202100235
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:8:p:3153-3172
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().