EconPapers    
Economics at your fingertips  
 

On the linearization of infinite‐dimensional random dynamical systems

Lucas Backes and Davor Dragičević

Mathematische Nachrichten, 2023, vol. 296, issue 8, 3173-3191

Abstract: We present a new version of the Grobman–Hartman's linearization theorem for random dynamics. Our result holds for infinite‐dimensional systems whose linear part is not necessarily invertible. In addition, by adding some restrictions on the nonlinear perturbations, we do not require for the linear part to be nonuniformly hyperbolic in the sense of Pesin but rather (besides requiring the existence of stable and unstable directions) allow for the existence of a third (central) direction on which we do not prescribe any behavior for the dynamics. Moreover, under some additional nonuniform growth condition, we prove that the conjugacies given by the linearization procedure are Hölder continuous when restricted to bounded subsets of the space.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202100510

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:8:p:3173-3191

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:8:p:3173-3191