EconPapers    
Economics at your fingertips  
 

The universal commensurability Busemann horofunction compactified Teichmüller space

Guangming Hu, Zhiyang Lv, Hideki Miyachi, Yi Qi and Dong Tan

Mathematische Nachrichten, 2023, vol. 296, issue 8, 3375-3386

Abstract: In this paper, the direct limit T∞B(S)$\mathcal {T}_{\infty }^{B}(S)$ of Busemann horofunction compactified Teichmülller spaces is introduced. It is shown that the action of the universal commensurability modular group Mod∞(S)$\text{Mod}_{\infty }(S)$ on T∞B(S)$\mathcal {T}_{\infty }^{B}(S)$ is isometric and for any point in the universal commensurability Teichmüller space T∞(S)$\mathcal {T}_{\infty }(S)$, its orbit under this action is dense in T∞B(S)$\mathcal {T}^{B}_{\infty }(S)$. Furthermore, we construct the direct limit M∞B(S)$\mathcal {M}^{B}_{\infty }(S)$ of Busemann horofunction compactified moduli spaces by the characteristic towers and show that the subgroup Caut(π1(S))$\text{Caut}(\pi _{1}(S))$ of Mod∞(S)$\text{Mod}_{\infty }(S)$ acts on T∞B(S)$\mathcal {T}^{B}_{\infty }(S)$ to produce M∞B(S)$\mathcal {M}^{B}_{\infty }(S)$ as the quotient. Finally, we get a formula of the limit distance between two Jenkins–Strebel rays in the universal commensurability Teichmüller space.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202100557

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:8:p:3375-3386

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:8:p:3375-3386