The universal commensurability Busemann horofunction compactified Teichmüller space
Guangming Hu,
Zhiyang Lv,
Hideki Miyachi,
Yi Qi and
Dong Tan
Mathematische Nachrichten, 2023, vol. 296, issue 8, 3375-3386
Abstract:
In this paper, the direct limit T∞B(S)$\mathcal {T}_{\infty }^{B}(S)$ of Busemann horofunction compactified Teichmülller spaces is introduced. It is shown that the action of the universal commensurability modular group Mod∞(S)$\text{Mod}_{\infty }(S)$ on T∞B(S)$\mathcal {T}_{\infty }^{B}(S)$ is isometric and for any point in the universal commensurability Teichmüller space T∞(S)$\mathcal {T}_{\infty }(S)$, its orbit under this action is dense in T∞B(S)$\mathcal {T}^{B}_{\infty }(S)$. Furthermore, we construct the direct limit M∞B(S)$\mathcal {M}^{B}_{\infty }(S)$ of Busemann horofunction compactified moduli spaces by the characteristic towers and show that the subgroup Caut(π1(S))$\text{Caut}(\pi _{1}(S))$ of Mod∞(S)$\text{Mod}_{\infty }(S)$ acts on T∞B(S)$\mathcal {T}^{B}_{\infty }(S)$ to produce M∞B(S)$\mathcal {M}^{B}_{\infty }(S)$ as the quotient. Finally, we get a formula of the limit distance between two Jenkins–Strebel rays in the universal commensurability Teichmüller space.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202100557
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:8:p:3375-3386
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().