Higher syzygies on general polarized Abelian varieties of type (1,⋯,1,d)$(1,\dots,1,d)$
Atsushi Ito
Mathematische Nachrichten, 2023, vol. 296, issue 8, 3395-3410
Abstract:
In this paper, we show that a general polarized abelian variety (X,L)$(X,L)$ of type (1,⋯,1,d)$(1,\dots ,1,d)$ and dimension g satisfies property (Np)$(N_p)$ if d≥∑i=0g(p+2)i$ d \ge \sum _{i=0}^{g} (p+2)^i$. In particular, the case p=0$p=0$ affirmatively solves a conjecture by Fuentes García on projective normality.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202100113
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:8:p:3395-3410
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().