EconPapers    
Economics at your fingertips  
 

Higher syzygies on general polarized Abelian varieties of type (1,⋯,1,d)$(1,\dots,1,d)$

Atsushi Ito

Mathematische Nachrichten, 2023, vol. 296, issue 8, 3395-3410

Abstract: In this paper, we show that a general polarized abelian variety (X,L)$(X,L)$ of type (1,⋯,1,d)$(1,\dots ,1,d)$ and dimension g satisfies property (Np)$(N_p)$ if d≥∑i=0g(p+2)i$ d \ge \sum _{i=0}^{g} (p+2)^i$. In particular, the case p=0$p=0$ affirmatively solves a conjecture by Fuentes García on projective normality.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202100113

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:8:p:3395-3410

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:8:p:3395-3410