On the n‐th linear polarization constant of Rn$\mathbb {R}^n$
Damián Pinasco
Mathematische Nachrichten, 2023, vol. 296, issue 8, 3593-3605
Abstract:
We prove that given any set of n unit vectors {vi}i=1n⊂Rn$\lbrace v_i\rbrace _{i=1}^{n}\subset \mathbb {R}^n$, the inequality sup∥x∥Rn=1|⟨x,v1⟩⋯⟨x,vn⟩|≥n−n/2$$\begin{equation*} \hspace*{7pc}\sup \limits _{\Vert x \Vert _{\mathbb {R}^n} =1} \vert \langle x, v_1 \rangle \cdots \langle x, v_n\rangle \vert \ge n^{-n/2} \end{equation*}$$holds for n≤14$n \le 14$. Moreover, the equality is attained if and only if {vi}i=1n$\lbrace v_i\rbrace _{i=1}^{n}$ is an orthonormal system.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202200026
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:8:p:3593-3605
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().