EconPapers    
Economics at your fingertips  
 

On the n‐th linear polarization constant of Rn$\mathbb {R}^n$

Damián Pinasco

Mathematische Nachrichten, 2023, vol. 296, issue 8, 3593-3605

Abstract: We prove that given any set of n unit vectors {vi}i=1n⊂Rn$\lbrace v_i\rbrace _{i=1}^{n}\subset \mathbb {R}^n$, the inequality sup∥x∥Rn=1|⟨x,v1⟩⋯⟨x,vn⟩|≥n−n/2$$\begin{equation*} \hspace*{7pc}\sup \limits _{\Vert x \Vert _{\mathbb {R}^n} =1} \vert \langle x, v_1 \rangle \cdots \langle x, v_n\rangle \vert \ge n^{-n/2} \end{equation*}$$holds for n≤14$n \le 14$. Moreover, the equality is attained if and only if {vi}i=1n$\lbrace v_i\rbrace _{i=1}^{n}$ is an orthonormal system.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202200026

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:8:p:3593-3605

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:8:p:3593-3605