Class fields, Dirichlet characters, and extended genus fields of global function fields
Martha Rzedowski‐Calderón and
Gabriel Villa‐Salvador
Mathematische Nachrichten, 2023, vol. 296, issue 8, 3606-3618
Abstract:
We study the extended genus field of an abelian extension of a rational function field. We follow the definition of Anglès and Jaulent, which uses the class field theory. First, we show that the natural definition of extended genus field of a cyclotomic function field obtained by means of Dirichlet characters is the same as the one given by Anglès and Jaulent. Next, we study the extended genus field of a finite abelian extension of a rational function field along the lines of the study of genus fields of abelian extensions of rational function fields. In the absolute abelian case, we compare this approach with the one given by Anglès and Jaulent.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202100570
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:8:p:3606-3618
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().