Interior continuity, continuity up to the boundary, and Harnack's inequality for double‐phase elliptic equations with nonlogarithmic conditions
Oleksandr V. Hadzhy,
Igor I. Skrypnik and
Mykhailo V. Voitovych
Mathematische Nachrichten, 2023, vol. 296, issue 9, 3892-3914
Abstract:
We prove continuity and Harnack's inequality for bounded solutions to elliptic equations of the type div|∇u|p−2∇u+a(x)|∇u|q−2∇u=0,a(x)≥0,|a(x)−a(y)|≤A|x−y|αμ(|x−y|),x≠y,div|∇u|p−2∇u1+ln(1+b(x)|∇u|)=0,b(x)≥0,|b(x)−b(y)|≤B|x−y|μ(|x−y|),x≠y,div|∇u|p−2∇u+c(x)|∇u|q−2∇u1+ln(1+|∇u|)β=0,c(x)≥0,β≥0,|c(x)−c(y)|≤C|x−y|q−pμ(|x−y|),x≠y,$$\begin{eqnarray*} \hspace*{13pc}&&{\rm div}{\left(|\nabla u|^{p-2}\,\nabla u+a(x)|\nabla u|^{q-2}\,\nabla u\right)}=0, \quad a(x)\ge 0,\\ &&\quad |a(x)-a(y)|\le A|x-y|^{\alpha }\mu (|x-y|), \quad x\ne y, \\ &&{\rm div}{\left(|\nabla u|^{p-2}\,\nabla u {\left[1+\ln (1+b(x)\, |\nabla u|) \right]} \right)}=0, \quad b(x)\ge 0, \\ &&\quad |b(x)-b(y)|\le B|x-y|\,\mu (|x-y|),\quad x\ne y,\\ &&{\rm div}{\left(|\nabla u|^{p-2}\,\nabla u+ c(x)|\nabla u|^{q-2}\,\nabla u {\left[1+\ln (1+|\nabla u|) \right]}^{\beta } \right)}=0,\\ &&c(x)\ge 0, \, \beta \ge 0, |c(x)-c(y)|\le C|x-y|^{q-p}\,\mu (|x-y|), \quad x\ne y, \end{eqnarray*}$$under the precise choice of μ.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202000574
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:9:p:3892-3914
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().