EconPapers    
Economics at your fingertips  
 

Interior continuity, continuity up to the boundary, and Harnack's inequality for double‐phase elliptic equations with nonlogarithmic conditions

Oleksandr V. Hadzhy, Igor I. Skrypnik and Mykhailo V. Voitovych

Mathematische Nachrichten, 2023, vol. 296, issue 9, 3892-3914

Abstract: We prove continuity and Harnack's inequality for bounded solutions to elliptic equations of the type div|∇u|p−2∇u+a(x)|∇u|q−2∇u=0,a(x)≥0,|a(x)−a(y)|≤A|x−y|αμ(|x−y|),x≠y,div|∇u|p−2∇u1+ln(1+b(x)|∇u|)=0,b(x)≥0,|b(x)−b(y)|≤B|x−y|μ(|x−y|),x≠y,div|∇u|p−2∇u+c(x)|∇u|q−2∇u1+ln(1+|∇u|)β=0,c(x)≥0,β≥0,|c(x)−c(y)|≤C|x−y|q−pμ(|x−y|),x≠y,$$\begin{eqnarray*} \hspace*{13pc}&&{\rm div}{\left(|\nabla u|^{p-2}\,\nabla u+a(x)|\nabla u|^{q-2}\,\nabla u\right)}=0, \quad a(x)\ge 0,\\ &&\quad |a(x)-a(y)|\le A|x-y|^{\alpha }\mu (|x-y|), \quad x\ne y, \\ &&{\rm div}{\left(|\nabla u|^{p-2}\,\nabla u {\left[1+\ln (1+b(x)\, |\nabla u|) \right]} \right)}=0, \quad b(x)\ge 0, \\ &&\quad |b(x)-b(y)|\le B|x-y|\,\mu (|x-y|),\quad x\ne y,\\ &&{\rm div}{\left(|\nabla u|^{p-2}\,\nabla u+ c(x)|\nabla u|^{q-2}\,\nabla u {\left[1+\ln (1+|\nabla u|) \right]}^{\beta } \right)}=0,\\ &&c(x)\ge 0, \, \beta \ge 0, |c(x)-c(y)|\le C|x-y|^{q-p}\,\mu (|x-y|), \quad x\ne y, \end{eqnarray*}$$under the precise choice of μ.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202000574

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:9:p:3892-3914

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:9:p:3892-3914