On a nonhomogeneous, nonlinear Dirichlet eigenvalue problem
Zhenhai Liu and
Nikolaos S. Papageorgiou
Mathematische Nachrichten, 2023, vol. 296, issue 9, 3986-4001
Abstract:
We consider a nonlinear eigenvalue problem for the Dirichlet (p,q)$(p,q)$‐Laplacian with a sign‐changing Carathé$\acute{\rm e}$odory reaction. Using variational tools, truncation and comparison techniques, and critical groups, we prove an existence and multiplicity result which is global in the parameter λ>0$\lambda >0$ (bifurcation‐type theorem). Our work here complements the recent one by Papageorgiou–Qin–Rădulescu, Bull. Sci. Math. 172 (2021).
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202200040
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:9:p:3986-4001
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().