Parallel Codazzi tensors with submanifold applications
Anthony Gruber
Mathematische Nachrichten, 2023, vol. 296, issue 9, 4032-4042
Abstract:
A decomposition theorem is established for a class of closed Riemannian submanifolds immersed in a space form of the constant sectional curvature. In particular, it is shown that if M has nonnegative sectional curvature and admits a Codazzi tensor with “parallel mean curvature”, then M is locally isometric to a direct product of irreducible factors determined by the spectrum of that tensor. This decomposition is global when M is simply connected, and generalizes what is known for immersed submanifolds with parallel mean curvature vector.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202100060
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:9:p:4032-4042
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().