EconPapers    
Economics at your fingertips  
 

Gauss‐Prym maps on Enriques surfaces

Dario Faro and Irene Spelta

Mathematische Nachrichten, 2023, vol. 296, issue 9, 4454-4462

Abstract: We prove that the kth Gaussian map γHk$\gamma ^k_{H}$ is surjective on a polarized unnodal Enriques surface (S,H)$(S, H)$ with φ(H)>2k+4$\varphi (H)>2k+4$. In particular, as a consequence, when φ(H)>4(k+2)$\varphi (H)>4(k+2)$, we obtain the surjectivity of the kth Gauss‐Prym map γωC⊗αk$\gamma ^k_{\omega _C\otimes \alpha }$, with α:=ωS|C$\alpha :=\omega _{S\vert _{C}}$, on smooth hyperplane sections C∈|H|$C\in \vert H\vert$. In case k=1$k=1$, it is sufficient to ask φ(H)>6$\varphi (H)>6$.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202200287

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:9:p:4454-4462

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:9:p:4454-4462