Gauss‐Prym maps on Enriques surfaces
Dario Faro and
Irene Spelta
Mathematische Nachrichten, 2023, vol. 296, issue 9, 4454-4462
Abstract:
We prove that the kth Gaussian map γHk$\gamma ^k_{H}$ is surjective on a polarized unnodal Enriques surface (S,H)$(S, H)$ with φ(H)>2k+4$\varphi (H)>2k+4$. In particular, as a consequence, when φ(H)>4(k+2)$\varphi (H)>4(k+2)$, we obtain the surjectivity of the kth Gauss‐Prym map γωC⊗αk$\gamma ^k_{\omega _C\otimes \alpha }$, with α:=ωS|C$\alpha :=\omega _{S\vert _{C}}$, on smooth hyperplane sections C∈|H|$C\in \vert H\vert$. In case k=1$k=1$, it is sufficient to ask φ(H)>6$\varphi (H)>6$.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202200287
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:9:p:4454-4462
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().