On the Fisher‐KPP model with nonlocal nonlinear sources
Shen Bian
Mathematische Nachrichten, 2024, vol. 297, issue 1, 144-164
Abstract:
The Cauchy problem considered in this paper is the following: 1 ut=Δu+uαM0−∫Rnu(x,t)dx,x∈Rn,t>0,u(x,0)=u0(x)≥0,x∈Rn,$$\begin{align} \hspace*{4pc}\left\{ \def\eqcellsep{&}\begin{array}{ll} u_t=\Delta u+u^\alpha {\left(M_0- \int _{{\mathbb {R}}^n} u(x,t)dx\right)},\quad & x \in {\mathbb {R}}^n, t>0, \\[3pt] u(x,0)=u_0(x)\ge 0,\quad & x \in {\mathbb {R}}^n, \end{array} \right.\hspace*{-4pc} \end{align}$$where M0>0,α>1,n≥3$M_0>0, \alpha >1, n \ge 3$. When the coefficient M0−∫Rnu(x,t)dx$M_0-\int _{{\mathbb {R}}^n} u(x,t) dx$ remains positive, (1) is analogous to 2 ut=Δu+uα,x∈Rn,t>0,u(x,0)=u0(x)≥0,x∈Rn.$$\begin{align} \hspace*{6pc}{\left\lbrace \def\eqcellsep{&}\begin{array}{ll}u_t=\Delta u+u^\alpha ,\quad & x \in {\mathbb {R}}^n, t>0, \\[3pt] u(x,0)=u_0(x)\ge 0,\quad & x \in {\mathbb {R}}^n. \end{array} \right.} \hspace*{-6pc}\end{align}$$It is well known that when 1
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202200257
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:1:p:144-164
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().