EconPapers    
Economics at your fingertips  
 

On the Fisher‐KPP model with nonlocal nonlinear sources

Shen Bian

Mathematische Nachrichten, 2024, vol. 297, issue 1, 144-164

Abstract: The Cauchy problem considered in this paper is the following: 1 ut=Δu+uαM0−∫Rnu(x,t)dx,x∈Rn,t>0,u(x,0)=u0(x)≥0,x∈Rn,$$\begin{align} \hspace*{4pc}\left\{ \def\eqcellsep{&}\begin{array}{ll} u_t=\Delta u+u^\alpha {\left(M_0- \int _{{\mathbb {R}}^n} u(x,t)dx\right)},\quad & x \in {\mathbb {R}}^n, t>0, \\[3pt] u(x,0)=u_0(x)\ge 0,\quad & x \in {\mathbb {R}}^n, \end{array} \right.\hspace*{-4pc} \end{align}$$where M0>0,α>1,n≥3$M_0>0, \alpha >1, n \ge 3$. When the coefficient M0−∫Rnu(x,t)dx$M_0-\int _{{\mathbb {R}}^n} u(x,t) dx$ remains positive, (1) is analogous to 2 ut=Δu+uα,x∈Rn,t>0,u(x,0)=u0(x)≥0,x∈Rn.$$\begin{align} \hspace*{6pc}{\left\lbrace \def\eqcellsep{&}\begin{array}{ll}u_t=\Delta u+u^\alpha ,\quad & x \in {\mathbb {R}}^n, t>0, \\[3pt] u(x,0)=u_0(x)\ge 0,\quad & x \in {\mathbb {R}}^n. \end{array} \right.} \hspace*{-6pc}\end{align}$$It is well known that when 1

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202200257

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:1:p:144-164

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:297:y:2024:i:1:p:144-164