Brauer groups and étale homotopy type
Mohammed Moutand
Mathematische Nachrichten, 2024, vol. 297, issue 1, 229-245
Abstract:
Extending a result of Schröer on a Grothendieck question in the context of complex analytic spaces, we prove that the surjectivity of the Brauer map δ:Br(X)→Hét2(X,Gm,X)tors$\delta : \operatorname{Br}(X) \rightarrow H_{{\text{\rm \'{e}t}}}^2(X, \mathbb {G}_{m, X})_{\rm tors}$ for schemes depends on their étale homotopy type. We use properties of algebraic K(π,1)$K(\pi , 1)$ spaces to apply this to some classes of proper and smooth algebraic schemes. In particular, we recover a result of Hoobler and Berkovich for abelian varieties.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202200190
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:1:p:229-245
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().