EconPapers    
Economics at your fingertips  
 

Brauer groups and étale homotopy type

Mohammed Moutand

Mathematische Nachrichten, 2024, vol. 297, issue 1, 229-245

Abstract: Extending a result of Schröer on a Grothendieck question in the context of complex analytic spaces, we prove that the surjectivity of the Brauer map δ:Br(X)→Hét2(X,Gm,X)tors$\delta : \operatorname{Br}(X) \rightarrow H_{{\text{\rm \'{e}t}}}^2(X, \mathbb {G}_{m, X})_{\rm tors}$ for schemes depends on their étale homotopy type. We use properties of algebraic K(π,1)$K(\pi , 1)$ spaces to apply this to some classes of proper and smooth algebraic schemes. In particular, we recover a result of Hoobler and Berkovich for abelian varieties.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202200190

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:1:p:229-245

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:297:y:2024:i:1:p:229-245