Stability related to the Lp$L_p$ Busemann–Petty problem
Tian Li and
Baocheng Zhu
Mathematische Nachrichten, 2024, vol. 297, issue 1, 360-377
Abstract:
The Lp$L_p$ Busemann–Petty problem for 0 0$\varepsilon >0$ small enough, if K is an Lp$L_p$ intersection body and L is a star body such that for any u∈Sn−1$u\in S^{n-1}$, the following inequality: ∥u∥IpK−p≤∥u∥IpL−p+ε$$\begin{equation*} \Vert u\Vert _{I_pK}^{-p}\le \Vert u\Vert _{I_pL}^{-p}+\varepsilon \end{equation*}$$implies V(K)n−pn≤V(L)n−pn+Cε,$$\begin{equation*} V(K)^{\frac{n-p}{n}}\le V(L)^{\frac{n-p}{n}}+C\varepsilon , \end{equation*}$$where ∥·∥IpK$\Vert \cdot \Vert _{I_pK}$ is the Minkowski functional of IpK$I_pK$, and C is a positive number depending only on p and n. Moreover, we also prove the linear stability and separation results for the negative answer of the Lp$L_p$ Busemann–Petty problem.
Date: 2024
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/mana.202200491
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:1:p:360-377
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().