EconPapers    
Economics at your fingertips  
 

Stability related to the Lp$L_p$ Busemann–Petty problem

Tian Li and Baocheng Zhu

Mathematische Nachrichten, 2024, vol. 297, issue 1, 360-377

Abstract: The Lp$L_p$ Busemann–Petty problem for 0 0$\varepsilon >0$ small enough, if K is an Lp$L_p$ intersection body and L is a star body such that for any u∈Sn−1$u\in S^{n-1}$, the following inequality: ∥u∥IpK−p≤∥u∥IpL−p+ε$$\begin{equation*} \Vert u\Vert _{I_pK}^{-p}\le \Vert u\Vert _{I_pL}^{-p}+\varepsilon \end{equation*}$$implies V(K)n−pn≤V(L)n−pn+Cε,$$\begin{equation*} V(K)^{\frac{n-p}{n}}\le V(L)^{\frac{n-p}{n}}+C\varepsilon , \end{equation*}$$where ∥·∥IpK$\Vert \cdot \Vert _{I_pK}$ is the Minkowski functional of IpK$I_pK$, and C is a positive number depending only on p and n. Moreover, we also prove the linear stability and separation results for the negative answer of the Lp$L_p$ Busemann–Petty problem.

Date: 2024
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/mana.202200491

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:1:p:360-377

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:bla:mathna:v:297:y:2024:i:1:p:360-377