EconPapers    
Economics at your fingertips  
 

Hilbert C∗$C^*$‐module independence

Rasoul Eskandari, Jan Hamhalter, Vladimir M. Manuilov and Mohammad Sal Moslehian

Mathematische Nachrichten, 2024, vol. 297, issue 2, 494-511

Abstract: We introduce the notion of Hilbert C∗$C^*$‐module independence: Let A$\mathcal {A}$ be a unital C∗$C^*$‐algebra and let Ei⊆E,i=1,2$\mathcal {E}_i\subseteq \mathcal {E},\,\,i=1, 2$, be ternary subspaces of a Hilbert A$\mathcal {A}$‐module E$\mathcal {E}$. Then, E1$\mathcal {E}_1$ and E2$\mathcal {E}_2$ are said to be Hilbert C∗$C^*$‐module independent if there are positive constants m and M such that for every state φi$\varphi _i$ on ⟨Ei,Ei⟩,i=1,2$\langle \mathcal {E}_i,\mathcal {E}_i\rangle ,\,\,i=1, 2$, there exists a state φ on A$\mathcal {A}$ such that mφi(|x|)≤φ(|x|)≤Mφi(|x|2)12,for allx∈Ei,i=1,2.$$\begin{align*} m\varphi _i(|x|)\le \varphi (|x|) \le M\varphi _i{(|x|^2)}^{\frac{1}{2}},\qquad \mbox{for all\nobreakspace }x\in \mathcal {E}_i, i=1, 2. \end{align*}$$We show that it is a natural generalization of the notion of C∗$C^*$‐independence of C∗$C^*$‐algebras. Moreover, we demonstrate that even in the case of C∗$C^*$‐algebras, this concept of independence is new and has a nice characterization in terms of Hahn–Banach–type extensions. We show that if ⟨E1,E1⟩$\langle \mathcal {E}_1,\mathcal {E}_1\rangle$ has the quasi extension property and z∈E1∩E2$z\in \mathcal {E}_1\cap \mathcal {E}_2$ with ∥z∥=1$\Vert z\Vert =1$, then |z|=1$|z|=1$. Several characterizations of Hilbert C∗$C^*$‐module independence and a new characterization of C∗$C^*$‐independence are given. One of characterizations states that if z0∈E1∩E2$z_0\in \mathcal {E}_1\cap \mathcal {E}_2$ is such that ⟨z0,z0⟩=1$\langle z_0,z_0\rangle =1$, then E1$\mathcal {E}_1$ and E2$\mathcal {E}_2$ are Hilbert C∗$C^*$‐module independent if and only if ∥⟨x,z0⟩⟨y,z0⟩∥=∥⟨x,z0⟩∥∥⟨y,z0⟩∥$\Vert \langle x,z_0\rangle \langle y,z_0\rangle \Vert =\Vert \langle x,z_0\rangle \Vert \,\Vert \langle y,z_0\rangle \Vert$ for all x∈E1$x\in \mathcal {E}_1$ and y∈E2$y\in \mathcal {E}_2$. We also provide some technical examples and counterexamples to illustrate our results.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202200472

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:2:p:494-511

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:297:y:2024:i:2:p:494-511