EconPapers    
Economics at your fingertips  
 

A note on commutators of singular integrals with BMO and VMO functions in the Dunkl setting

Jacek Dziubański and Agnieszka Hejna

Mathematische Nachrichten, 2024, vol. 297, issue 2, 629-643

Abstract: On RN$\mathbb {R}^N$ equipped with a root system R, multiplicity function k≥0$k \ge 0$, and the associated measure dw(x)=∏α∈R|⟨x,α⟩|k(α)dx$dw(\mathbf {x})=\prod _{\alpha \in R}|\langle \mathbf {x},\alpha \rangle |^{k(\alpha )}\,d\mathbf {x}$, we consider a (nonradial) kernel K(x)${K}(\mathbf {x})$, which has properties similar to those from the classical theory of singular integrals and the Dunkl convolution operator Tf=f∗K$\mathbf {T}f=f*K$ associated with K. Assuming that b belongs to the BMO space on the space of homogeneous type X=(RN,∥·∥,dw)$X=(\mathbb {R}^N,\Vert \cdot \Vert ,dw)$, we prove that the commutator [b,T]f(x)=b(x)Tf(x)−T(bf)(x)$[b,\mathbf {T}]f(\mathbf {x})=b(\mathbf {x})\mathbf {T}f(\mathbf {x})-\mathbf {T}(bf)(\mathbf {x})$ is a bounded operator on Lp(dw)$L^p(dw)$ for all 1

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202300106

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:2:p:629-643

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:297:y:2024:i:2:p:629-643