A compact embedding result and its applications to a nonlocal Schrödinger equation
Guangze Gu,
Xu Zhang and
Fukun Zhao
Mathematische Nachrichten, 2024, vol. 297, issue 2, 707-715
Abstract:
Compactness is a fundamental issue in nonlinear analysis. Assume s∈(0,1)$s\in (0,1)$ and Ω⊂RN$\Omega \subset \mathbb {R}^N$ with N>2s$N>2s$, we consider a subspace X0,Gs(Ω)$X^s_{0,G}(\Omega )$ of X0s(Ω)$X_0^s(\Omega )$, which is the space of invariant functions corresponding to a subgroup G of O(N)$O(N)$, where X0s(Ω)$X_0^s(\Omega )$ is a kind of function spaces including fractional Sobolev spaces H0s(Ω)$H_0^s(\Omega )$. We show that the embeddings X0,Gs(Ω)↪Lp(Ω)$X_{0,G}^s(\Omega )\hookrightarrow L^p(\Omega )$ are compact for p∈(2,2s∗)$p\in (2,2_s^*)$ provided Ω is compatible with G, where 2s∗=2NN−2s$2^*_s=\frac{2N}{N-2s}$ is the fractional Sobolev critical exponent. Moreover, the existence and multiplicity of radial and nonradial solutions were obtained of the following nonlocal Schrödinger equation: −Lku+V(x)u=f(x,u),x∈RN,$$\begin{equation*} -{\mathcal {L}_k}u+V(x)u=f(x,u),\ x\in \ \mathbb {R}^N, \end{equation*}$$where −Lk$-{\mathcal {L}_k}$ is an integro‐differential operator has order 2s and can be given by Lku(x):=∫RNu(x+y)+u(x−y)−2u(x)K(y)dy,x∈RN,$$\begin{equation*} {\mathcal {L}_k}u(x):=\int _{\mathbb {R}^N}{\left(u(x+y)+u(x-y)-2u(x)\right)}K(y)dy,\ x\in \mathbb {R}^N, \end{equation*}$$and the kernel K satisfies the following properties: (K1)there is θ>0$\theta > 0$ and s∈(0,1)$s\in (0,1)$ such that K(x)≥θ|x|−(N+2s)$K(x)\ge \theta |x|^{-({N+2s})}$ for any x∈RN∖{0}$x\in \mathbb {R}^N\backslash \lbrace 0\rbrace$; (K2)mK∈L1(RN)$mK\in L^1(\mathbb {R}^N)$, where m(x):=min{|x|2,1}$m(x):=\min \lbrace |x|^2,1\rbrace$.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202200045
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:2:p:707-715
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().