Tempered distributions with translation bounded measure as Fourier transform and the generalized Eberlein decomposition
Timo Spindeler and
Nicolae Strungaru
Mathematische Nachrichten, 2024, vol. 297, issue 2, 716-740
Abstract:
In this paper, we study the class of tempered distributions whose Fourier transform is a translation bounded measure and show that each such distribution in Rd${\mathbb {R}}^d$ has order at most 2d. We show the existence of the generalized Eberlein decomposition within this class of distributions, and its compatibility with all previous Eberlein decompositions. The generalized Eberlein decomposition for Fourier transformable measures and properties of its components are discussed. Lastly, we take a closer look at the absolutely continuous spectrum of measures supported on Meyer sets.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202100658
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:2:p:716-740
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().