Littlewood–Paley–Rubio de Francia inequality for multi‐parameter Vilenkin systems
Viacheslav Borovitskiy
Mathematische Nachrichten, 2024, vol. 297, issue 3, 1092-1115
Abstract:
A version of Littlewood–Paley–Rubio de Francia inequality for bounded multi‐parameter Vilenkin systems is proved: For any family of disjoint sets Ik=Ik1×⋯×IkD⊆Z+D$I_k = I_k^1 \times \cdots \times I_k^D \subseteq {\mathbb {Z}_+^D}$ such that Ikd$I_k^d$ are intervals in Z+$\mathbb {Z}_+$ and a family of functions fk$f_k$ with Vilenkin–Fourier spectrum inside Ik$I_k$ the following holds: ∑kfkLp≤C∑kfk21/2Lp,1
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202200334
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:3:p:1092-1115
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().