On Seeley‐type universal extension operators for the upper half space
Haowen Lu and
Liding Yao
Mathematische Nachrichten, 2024, vol. 297, issue 3, 811-832
Abstract:
Modified from the standard half‐space extension via the reflection principle, we construct a linear extension operator for the upper half space R+n$\mathbb {R}^n_+$ that has the form Ef(x)=∑j=−∞∞ajf(x′,−bjxn)$Ef(x)=\sum _{j=-\infty }^\infty a_jf(x^{\prime },-b_jx_n)$ for xn
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202200551
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:3:p:811-832
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().