EconPapers    
Economics at your fingertips  
 

Curvature estimates for spacelike graphic hypersurfaces in Lorentz–Minkowski space R1n+1$\mathbb {R}^{n+1}_{1}$

Ya Gao, Jie Li, Jing Mao and Zhiqi Xie

Mathematische Nachrichten, 2024, vol. 297, issue 3, 833-860

Abstract: In this paper, we can obtain curvature estimates for spacelike admissible graphic hypersurfaces in the (n+1)$(n+1)$‐dimensional Lorentz–Minkowski space R1n+1$\mathbb {R}^{n+1}_{1}$, and through which the existence of spacelike admissible graphic hypersurfaces, with prescribed 2‐nd Weingarten curvature and Dirichlet boundary data, defined over a strictly convex domain in the hyperbolic plane Hn(1)⊂R1n+1$\mathcal {H}^{n}(1)\subset \mathbb {R}^{n+1}_{1}$ of center at origin and radius 1, can be proven.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202200107

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:3:p:833-860

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:297:y:2024:i:3:p:833-860