Dahlberg degeneracy for homogeneous Besov and Triebel–Lizorkin spaces
Gérard Bourdaud and
Madani Moussai
Mathematische Nachrichten, 2024, vol. 297, issue 3, 878-894
Abstract:
We consider the composition operators Tf:g↦f∘g$T_f: g\mapsto f\circ g$ acting on the real‐valued homogeneous Besov or Triebel–Lizorkin spaces, realized as dilation invariant subspaces of S′(Rn)$\mathcal {S}^{\prime }({\mathbb {R}}^n)$, denoted as Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$. If s>1+(1/p)$s>1+ (1/p)$ and s≠n/p$s\not= n/p$, then any function f:R→R$f:{\mathbb {R}}\rightarrow {\mathbb {R}}$ acting by composition on Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$ is necessarily linear. The above conditions are optimal: (i) in case s=n/p$s=n/p$, 0
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202300117
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:3:p:878-894
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().