EconPapers    
Economics at your fingertips  
 

Dahlberg degeneracy for homogeneous Besov and Triebel–Lizorkin spaces

Gérard Bourdaud and Madani Moussai

Mathematische Nachrichten, 2024, vol. 297, issue 3, 878-894

Abstract: We consider the composition operators Tf:g↦f∘g$T_f: g\mapsto f\circ g$ acting on the real‐valued homogeneous Besov or Triebel–Lizorkin spaces, realized as dilation invariant subspaces of S′(Rn)$\mathcal {S}^{\prime }({\mathbb {R}}^n)$, denoted as Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$. If s>1+(1/p)$s>1+ (1/p)$ and s≠n/p$s\not= n/p$, then any function f:R→R$f:{\mathbb {R}}\rightarrow {\mathbb {R}}$ acting by composition on Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$ is necessarily linear. The above conditions are optimal: (i) in case s=n/p$s=n/p$, 0

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202300117

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:3:p:878-894

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:297:y:2024:i:3:p:878-894