EconPapers    
Economics at your fingertips  
 

On the birational geometry of conic bundles over the projective space

Alex Massarenti and Massimiliano Mella

Mathematische Nachrichten, 2024, vol. 297, issue 4, 1208-1220

Abstract: Let π:Z→Pn−1$\pi :Z\rightarrow \mathbb {P}^{n-1}$ be a general minimal n$n$‐fold conic bundle with a hypersurface BZ⊂Pn−1$B_Z\subset \mathbb {P}^{n-1}$ of degree d$d$ as discriminant. We prove that if d≥4n+1$d\ge 4n+1$, then −KZ$-K_Z$ is not pseudo‐effective, and that if d=4n$d = 4n$, then none of the integral multiples of −KZ$-K_{Z}$ is effective. Finally, we provide examples of smooth unirational n$n$‐fold conic bundles π:Z→Pn−1$\pi :Z\rightarrow \mathbb {P}^{n-1}$ with a discriminant of arbitrarily high degree.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202300156

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:4:p:1208-1220

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:297:y:2024:i:4:p:1208-1220