EconPapers    
Economics at your fingertips  
 

New estimates of Rychkov's universal extension operator for Lipschitz domains and some applications

Ziming Shi and Liding Yao

Mathematische Nachrichten, 2024, vol. 297, issue 4, 1407-1443

Abstract: Given a bounded Lipschitz domain Ω⊂Rn$\Omega \subset \mathbb {R}^n$, Rychkov showed that there is a linear extension operator E$\mathcal {E}$ for Ω$\Omega$, which is bounded in Besov and Triebel‐Lizorkin spaces. In this paper, we introduce some new estimates for the extension operator E$\mathcal {E}$ and give some applications. We prove the equivalent norms ∥f∥Apqs(Ω)≈∑|α|≤m∥∂αf∥Apqs−m(Ω)$\Vert f\Vert _{\mathcal A_{pq}^s(\Omega )}\approx \sum _{|\alpha |\le m}\Vert \partial ^\alpha f\Vert _{\mathcal A_{pq}^{s-m}(\Omega )}$ for general Besov and Triebel‐Lizorkin spaces. We also derive some quantitative smoothing estimates of the extended function and all its derivatives on Ω¯c$\overline{\Omega }^c$ up to the boundary.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202300047

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:4:p:1407-1443

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:297:y:2024:i:4:p:1407-1443