Multiplicity of solutions for a singular problem involving the fractional p$p$‐Laplacian in the whole space
Zijian Wu and
Haibo Chen
Mathematische Nachrichten, 2024, vol. 297, issue 4, 1483-1500
Abstract:
In this paper, we prove the multiplicity of positive solutions for the following singular problem involving the fractional p$p$‐Laplacian: (−Δ)psu+V(x)|u|p−2u=a(x)uκ−1+μb(x)uq−1,inRN$$\begin{equation*} \hspace*{4pc}(-\Delta )_p^su+V(x)|u|^{p-2}u=a(x)u^{\kappa -1}+\mu b(x)u^{q-1}, \mbox{ in } \mathbb {R}^N \end{equation*}$$u(x)>0,inRN.$$\begin{equation*} \hspace*{10.6pc}u(x)>0, \mbox{ in } \mathbb {R}^N. \end{equation*}$$Here, μ>0$\mu >0$, 0
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202300015
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:4:p:1483-1500
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().