EconPapers    
Economics at your fingertips  
 

Well‐posedness of degenerate fractional differential equations with finite delay in complex Banach spaces

Shangquan Bu and Gang Cai

Mathematische Nachrichten, 2024, vol. 297, issue 4, 1535-1549

Abstract: We study the well‐posedness of the degenerate fractional differential equations with finite delay: Dα(Mu)(t)+cDβ(Mu)(t)$D^\alpha (Mu)(t) + cD^\beta (Mu)(t)$ =Au(t)+Fut+f(t),(0≤t≤2π)$= Au(t) + Fu_t + f(t),(0\le t\le 2\pi )$ on Lebesgue–Bochner spaces Lp(T;X)$L^p(\mathbb {T}; X)$ and periodic Besov spaces Bp,qs(T;X)$B_{p,q}^s(\mathbb {T}; X)$, where A$A$ and M$M$ are closed linear operators in a complex Banach space X$X$ satisfying D(A)⊂D(M)$D(A)\subset D(M)$, c∈C$c\in \mathbb {C}$ and 0

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202300276

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:4:p:1535-1549

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:297:y:2024:i:4:p:1535-1549