EconPapers    
Economics at your fingertips  
 

Normalized solutions of the Schrödinger equation with potential

Xin Zhao and Wenming Zou

Mathematische Nachrichten, 2024, vol. 297, issue 5, 1632-1651

Abstract: In this paper, for dimension N≥2$N\ge 2$ and prescribed mass m>0$m>0$, we consider the following nonlinear scalar field equation with L2$L^2$ constraint: −Δu+V(x)u+λu=g(u)inRN,∫RNu2=m,$$\begin{equation*} \left\{ \def\eqcellsep{&}\begin{array}{l} -\Delta u+V(x)u+\lambda u=g(u)\qquad \hbox{in} \; \mathbb {R}^N, \\ \int _{\mathbb {R}^N} u^2=m, \end{array} \right. \end{equation*}$$where λ∈R$\lambda \in \mathbb {R}$ is a Lagrange multiplier, V(x)∈C1(RN,R)$V(x)\in C^1 (\mathbb {R}^N,\mathbb {R})$. In particular, g(x)∈C(R,R)$g(x)\in C(\mathbb {R},\mathbb {R})$ satisfies mass supercritical and Sobolev subcritical growth. We prove the existence results of the normalized solution and infinitely many normalized solutions to the above system under some proper assumptions on the functions V(x),g(x)$V(x), g(x)$ by the mountain pass argument.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202100498

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:5:p:1632-1651

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:297:y:2024:i:5:p:1632-1651