Remainder terms of a nonlocal Sobolev inequality
Shengbing Deng,
Xingliang Tian,
Minbo Yang and
Shunneng Zhao
Mathematische Nachrichten, 2024, vol. 297, issue 5, 1652-1667
Abstract:
In this note, we study a nonlocal version of the Sobolev inequality ∫RN|∇u|2dx≥SHLS∫RN|x|−α*u2α*u2α*dx12α*,∀u∈D1,2(RN),$$\begin{equation*} \int _{\mathbb {R}^N}|\nabla u|^2 dx \ge S_{\text{HLS}}{\left(\int _{\mathbb {R}^N}{\left(|x|^{-\alpha} \ast u^{2_\alpha ^{\ast}}\right)}u^{2_\alpha ^{\ast}} dx\right)}^{\frac{1}{2_\alpha ^{\ast}}}, \quad \forall u\in \mathcal {D}^{1,2}(\mathbb {R}^N), \end{equation*}$$where SHLS$S_{\text{HLS}}$ is the best constant, *$\ast$ denotes the standard convolution and D1,2(RN)$\mathcal {D}^{1,2}(\mathbb {R}^N)$ denotes the classical Sobolev space with respect to the norm ∥u∥D1,2(RN)=∥∇u∥L2(RN)$\Vert u\Vert _{\mathcal {D}^{1,2}(\mathbb {R}^N)}=\Vert \nabla u\Vert _{L^2(\mathbb {R}^N)}$. By using the nondegeneracy property of the extremal functions, we prove that the existence of the gradient type remainder term and a reminder term in the weak LNN−2$L^{\frac{N}{N-2}}$‐norm of above inequality for all 0
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202300172
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:5:p:1652-1667
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().