EconPapers    
Economics at your fingertips  
 

Global solutions to the rotating Navier–Stokes equations with large data in the critical Fourier–Besov spaces

Mikihiro Fujii

Mathematische Nachrichten, 2024, vol. 297, issue 5, 1678-1693

Abstract: We consider the initial value problem for the 3D incompressible Navier–Stokes equations with the Coriolis force. The aim of this paper is to prove the existence of a unique global solution with arbitrarily large initial data in the scaling critical Fourier–Besov spaces Ḃ̂p,σ3p−1(R3)3$\widehat{\dot{B}}{}_{p,\sigma}^{\frac{3}{p}-1}(\mathbb {R}^3)^3$ (2⩽p

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202300226

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:5:p:1678-1693

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:297:y:2024:i:5:p:1678-1693