Normalized solutions for a Schrödinger system with critical Sobolev growth in R3$\mathbb {R}^3$
Mei‐Qi Liu and
Wenming Zou
Mathematische Nachrichten, 2024, vol. 297, issue 5, 1694-1711
Abstract:
We study the following critical Schrödinger system in R3$\mathbb {R}^3$: −Δu+λ1u=|u|4u+μ1|u|p−2u+αν|u|α−2u|v|β,−Δv+λ2v=|v|4v+μ2|v|p−2v+βν|u|α|v|β−2v,∫R3u2dx=a2and∫R3v2dx=b2,u,v∈H1(R3),$$\begin{equation*} {\begin{cases} -\Delta u+\lambda _1 u=|u|^{4}u+\mu _1|u|^{p-2}u+\alpha \nu|u|^{\alpha -2}u|v|^{\beta},\\ -\Delta v+\lambda _2 v=|v|^{4}v+\mu _2|v|^{p-2}v+\beta \nu|u|^{\alpha}|v|^{\beta -2}v,\\ \int _{\mathbb {R}^3} u^2dx=a^2\;\; \hbox{and}\;\; \int _{\mathbb {R}^3} v^2dx=b^2,\;\;u,v\in H^1(\mathbb {R}^3), \end{cases}} \end{equation*}$$where α,β>1,α+β=2∗=6$\alpha,\beta >1, \alpha +\beta =2^*=6$, p∈(2,6)$p\in (2,6)$, ν>0$\nu >0$, and μ1,μ2,λ1,λ2∈R$\mu _1, \mu _2, \lambda _1, \lambda _2\in \mathbb {R}$. Any (u,v)$(u,v)$ solving such system (for some λ1,λ2$\lambda _1,\lambda _2$) is called the normalized solution in the literature, where the normalization is settled in L2(R3)$L^2(\mathbb {R}^3)$. We show that this system has a positive ground state for p∈(2,103)$ p\in (2,\frac{10}{3})$ in the case of μ1,μ2>0$\mu _1,\mu _2>0$. For the case of 2
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202200372
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:5:p:1694-1711
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().