EconPapers    
Economics at your fingertips  
 

Global integrability for solutions to quasilinear elliptic systems with degenerate coercivity

Ya Li, Gaoyang Liu and Hongya Gao

Mathematische Nachrichten, 2024, vol. 297, issue 5, 1818-1830

Abstract: This paper deals with global integrability for solutions to quasilinear elliptic systems involving N$N$ equations of the form −∑i=1nDi∑β=1N∑j=1nai,jα,β(x,u(x))Djuβ(x)=fα(x),inΩ,u(x)=0,on∂Ω,$$\begin{equation*} {\begin{cases} \displaystyle -\sum _{i=1}^n D_i {\left(\sum _{\beta =1}^N \sum _{j=1}^n a^{\alpha, \beta } _{i,j} (x,u(x)) D_j u^\beta (x) \right)} =f^\alpha (x), & \mbox{ in } \Omega, \\[10pt] \displaystyle u(x)=0, &\displaystyle \mbox{ on } \partial \Omega, \end{cases}} \end{equation*}$$where Ω$\Omega$ is an open bounded subset of Rn$\mathbb {R}^n$, n>2$n>2$, u=(u1,u2,…,uN):Ω⊂Rn→RN$u=(u^1,u^2,\ldots,u^N):\Omega \subset \mathbb {R}^n \rightarrow \mathbb {R}^N$, N≥2$N\ge 2$. Under degenerate coercivity condition of the diagonal coefficients and proportional condition of the off‐diagonal coefficients, we obtain some global integrability results.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202200550

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:5:p:1818-1830

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:297:y:2024:i:5:p:1818-1830