Global integrability for solutions to quasilinear elliptic systems with degenerate coercivity
Ya Li,
Gaoyang Liu and
Hongya Gao
Mathematische Nachrichten, 2024, vol. 297, issue 5, 1818-1830
Abstract:
This paper deals with global integrability for solutions to quasilinear elliptic systems involving N$N$ equations of the form −∑i=1nDi∑β=1N∑j=1nai,jα,β(x,u(x))Djuβ(x)=fα(x),inΩ,u(x)=0,on∂Ω,$$\begin{equation*} {\begin{cases} \displaystyle -\sum _{i=1}^n D_i {\left(\sum _{\beta =1}^N \sum _{j=1}^n a^{\alpha, \beta } _{i,j} (x,u(x)) D_j u^\beta (x) \right)} =f^\alpha (x), & \mbox{ in } \Omega, \\[10pt] \displaystyle u(x)=0, &\displaystyle \mbox{ on } \partial \Omega, \end{cases}} \end{equation*}$$where Ω$\Omega$ is an open bounded subset of Rn$\mathbb {R}^n$, n>2$n>2$, u=(u1,u2,…,uN):Ω⊂Rn→RN$u=(u^1,u^2,\ldots,u^N):\Omega \subset \mathbb {R}^n \rightarrow \mathbb {R}^N$, N≥2$N\ge 2$. Under degenerate coercivity condition of the diagonal coefficients and proportional condition of the off‐diagonal coefficients, we obtain some global integrability results.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202200550
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:5:p:1818-1830
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().