Degrees of closed points on hypersurfaces
Francesca Balestrieri
Mathematische Nachrichten, 2024, vol. 297, issue 5, 1831-1837
Abstract:
Let k$k$ be any field. Let X⊂PkN$X \subset \mathbb {P}_k^N$ be a degree d≥2$d \ge 2$ hypersurface. Under some conditions, we prove that if X(K)≠∅$X(K) \ne \emptyset$ for some extension K/k$K/k$ with n:=[K:k]≥2$n:=[K:k] \ge 2$ and gcd(n,d)=1$\gcd (n,d)=1$, then X(L)≠∅$X(L) \ne \emptyset$ for some extension L/k$L/k$ with gcd([L:k],d)=1$\gcd ([L:k], d)=1$, n∤[L:k]$n \nmid [L:k]$, and [L:k]≤nd−n−d$[L:k] \le nd-n-d$. Moreover, if a K$K$‐solution is known explicitly, then we can compute L/k$L/k$ explicitly as well. As an application, we improve upon a result by Coray on smooth cubic surfaces X⊂Pk3$X \subset \mathbb {P}^3_k$ by showing that if X(K)≠∅$X(K) \ne \emptyset$ for some extension K/k$K/k$ with gcd([K:k],3)=1$\gcd ([K:k], 3)=1$, then X(L)≠∅$X(L) \ne \emptyset$ for some L/k$L/k$ with [L:k]∈{1,10}$[L:k] \in \lbrace 1, 10\rbrace$.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202300160
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:5:p:1831-1837
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().