EconPapers    
Economics at your fingertips  
 

Bilinear Θ$\Theta$‐type Calderón–Zygmund operators and their commutators on product generalized fractional mixed Morrey spaces

Guanghui Lu, Shuangping Tao and Miaomiao Wang

Mathematische Nachrichten, 2024, vol. 297, issue 6, 1988-2005

Abstract: The aim of this paper is to investigate the boundedness of the bilinear θ$\theta$‐type Calderón–Zygmund operator and its commutator on the product of generalized fractional mixed Morrey spaces. Under assumption that the positive and increasing functions φ(·)$\varphi (\cdot)$ defined on [0,∞)$[0,\infty)$ satisfy doubling conditions, we prove that the bilinear θ$\theta$‐type Calderón–Zygmund operator T∼θ$\widetilde{T}_{\theta }$ is bounded from the product of generalized fractional mixed Morrey spaces Lp⃗1,η1,φ(Rn)×Lp⃗2,η2,φ(Rn)$L^{\vec{p}_{1},\eta _{1},\varphi }({\bf R}^{n})\times L^{\vec{p}_{2},\eta _{2},\varphi }({\bf R}^{n})$ into spaces Lp⃗,η,φ(Rn)$L^{\vec{p},\eta,\varphi }({\bf R}^{n})$, where p⃗1=(p11,…,p1n)$\vec{p}_{1}=(p_{11},\ldots ,p_{1n})$, p⃗2=(p21,…,p2n)$\vec{p}_{2}=(p_{21},\ldots ,p_{2n})$, p⃗=(p1,…,pn)$\vec{p}=(p_{1},\ldots ,p_{n})$, 1p⃗1+1p⃗2=1p⃗$\frac{1}{\vec{p}_{1}}+\frac{1}{\vec{p}_{2}}=\frac{1}{\vec{p}}$ for 1

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202200481

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:6:p:1988-2005

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:297:y:2024:i:6:p:1988-2005