Bilinear Θ$\Theta$‐type Calderón–Zygmund operators and their commutators on product generalized fractional mixed Morrey spaces
Guanghui Lu,
Shuangping Tao and
Miaomiao Wang
Mathematische Nachrichten, 2024, vol. 297, issue 6, 1988-2005
Abstract:
The aim of this paper is to investigate the boundedness of the bilinear θ$\theta$‐type Calderón–Zygmund operator and its commutator on the product of generalized fractional mixed Morrey spaces. Under assumption that the positive and increasing functions φ(·)$\varphi (\cdot)$ defined on [0,∞)$[0,\infty)$ satisfy doubling conditions, we prove that the bilinear θ$\theta$‐type Calderón–Zygmund operator T∼θ$\widetilde{T}_{\theta }$ is bounded from the product of generalized fractional mixed Morrey spaces Lp⃗1,η1,φ(Rn)×Lp⃗2,η2,φ(Rn)$L^{\vec{p}_{1},\eta _{1},\varphi }({\bf R}^{n})\times L^{\vec{p}_{2},\eta _{2},\varphi }({\bf R}^{n})$ into spaces Lp⃗,η,φ(Rn)$L^{\vec{p},\eta,\varphi }({\bf R}^{n})$, where p⃗1=(p11,…,p1n)$\vec{p}_{1}=(p_{11},\ldots ,p_{1n})$, p⃗2=(p21,…,p2n)$\vec{p}_{2}=(p_{21},\ldots ,p_{2n})$, p⃗=(p1,…,pn)$\vec{p}=(p_{1},\ldots ,p_{n})$, 1p⃗1+1p⃗2=1p⃗$\frac{1}{\vec{p}_{1}}+\frac{1}{\vec{p}_{2}}=\frac{1}{\vec{p}}$ for 1
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202200481
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:6:p:1988-2005
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().