EconPapers    
Economics at your fingertips  
 

A singular growth phenomenon in a Keller–Segel–type parabolic system involving density‐suppressed motilities

Yulan Wang and Michael Winkler

Mathematische Nachrichten, 2024, vol. 297, issue 6, 2353-2364

Abstract: A no‐flux initial‐boundary value problem for εuεt=Δ(uεvε−α),vεt=Δvε−vε+uε(★)$$\begin{equation*} \hspace*{92pt} \def\eqcellsep{&}\begin{array}{cc} \left\{ \def\eqcellsep{&}\begin{array}{ll} \varepsilon {u}_{\varepsilon t}& =\Delta ({u}_{\varepsilon}{v}_{\varepsilon}^{-\alpha}),\\ {v}_{\varepsilon t}& =\Delta{v}_{\varepsilon}-{v}_{\varepsilon}+{u}_{\varepsilon}\end{array} \right.\qquad \qquad(\star ) \end{array} \end{equation*}$$is considered in a ball Ω⊂Rn$\Omega \subset \mathbb {R}^n$, where n≥3$n\ge 3$ and ε>0$\varepsilon >0$. Under the assumption that α>nn−2$\alpha >\frac{n}{n-2}$, it is shown that for each m>0$m>0$, there exist T>0$T>0$ and a positive v0∈W1,∞(Ω)$v_0\in W^{1,\infty }(\Omega)$ with the property that whenever u0∈W1,∞(Ω)$u_0\in W^{1,\infty }(\Omega)$ is nonnegative with ∫Ωu0=m$\int _\Omega u_0=m$, the global solutions to (★$\star$) emanating from the initial data (u0,v0)$(u_0,v_0)$ have the property that lim supε↘0supt∈(0,T)∥uε(·,t)∥Lp(Ω)=∞for allp>n2.$$\begin{eqnarray*} \hspace*{160pt}\limsup _{\varepsilon \searrow 0} \sup _{t\in (0,T)} \Vert u_\varepsilon (\cdot,t)\Vert _{L^p(\Omega)} = \infty \qquad \mbox{for all } p>\frac{n}{2}. \end{eqnarray*}$$

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202300361

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:6:p:2353-2364

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:297:y:2024:i:6:p:2353-2364