A singular growth phenomenon in a Keller–Segel–type parabolic system involving density‐suppressed motilities
Yulan Wang and
Michael Winkler
Mathematische Nachrichten, 2024, vol. 297, issue 6, 2353-2364
Abstract:
A no‐flux initial‐boundary value problem for εuεt=Δ(uεvε−α),vεt=Δvε−vε+uε(★)$$\begin{equation*} \hspace*{92pt} \def\eqcellsep{&}\begin{array}{cc} \left\{ \def\eqcellsep{&}\begin{array}{ll} \varepsilon {u}_{\varepsilon t}& =\Delta ({u}_{\varepsilon}{v}_{\varepsilon}^{-\alpha}),\\ {v}_{\varepsilon t}& =\Delta{v}_{\varepsilon}-{v}_{\varepsilon}+{u}_{\varepsilon}\end{array} \right.\qquad \qquad(\star ) \end{array} \end{equation*}$$is considered in a ball Ω⊂Rn$\Omega \subset \mathbb {R}^n$, where n≥3$n\ge 3$ and ε>0$\varepsilon >0$. Under the assumption that α>nn−2$\alpha >\frac{n}{n-2}$, it is shown that for each m>0$m>0$, there exist T>0$T>0$ and a positive v0∈W1,∞(Ω)$v_0\in W^{1,\infty }(\Omega)$ with the property that whenever u0∈W1,∞(Ω)$u_0\in W^{1,\infty }(\Omega)$ is nonnegative with ∫Ωu0=m$\int _\Omega u_0=m$, the global solutions to (★$\star$) emanating from the initial data (u0,v0)$(u_0,v_0)$ have the property that lim supε↘0supt∈(0,T)∥uε(·,t)∥Lp(Ω)=∞for allp>n2.$$\begin{eqnarray*} \hspace*{160pt}\limsup _{\varepsilon \searrow 0} \sup _{t\in (0,T)} \Vert u_\varepsilon (\cdot,t)\Vert _{L^p(\Omega)} = \infty \qquad \mbox{for all } p>\frac{n}{2}. \end{eqnarray*}$$
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202300361
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:6:p:2353-2364
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().