Endpoint estimates for harmonic analysis operators associated with Laguerre polynomial expansions
Jorge J. Betancor,
Estefanía Dalmasso,
Pablo Quijano and
Roberto Scotto
Mathematische Nachrichten, 2024, vol. 297, issue 6, 2365-2389
Abstract:
In this paper, we give a criterion to prove boundedness results for several operators from the Hardy‐type space H1((0,∞)d,γα)$H^1((0,\infty)^d,\gamma _\alpha)$ to L1((0,∞)d,γα)$L^1((0,\infty)^d,\gamma _\alpha)$ and also from L∞((0,∞)d,γα)$L^\infty ((0,\infty)^d,\gamma _\alpha)$ to the space of functions of bounded mean oscillation BMO((0,∞)d,γα)$\textup {BMO}((0,\infty)^d,\gamma _\alpha)$, with respect to the probability measure dγα(x)=∏j=1d2Γ(αj+1)xj2αj+1e−xj2dxj$d\gamma _\alpha (x)=\prod _{j=1}^d\frac{2}{\Gamma (\alpha _j+1)} x_j^{2\alpha _j+1} \text{e}^{-x_j^2} dx_j$ on (0,∞)d$(0,\infty)^d$ when α=(α1,⋯,αd)$\alpha =(\alpha _1, \dots,\alpha _d)$ is a multi‐index in −12,∞d$\left(-\frac{1}{2},\infty \right)^d$. We shall apply it to establish endpoint estimates for Riesz transforms, maximal operators, Littlewood–Paley functions, multipliers of the Laplace transform type, fractional integrals, and variation operators in the Laguerre setting.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202300088
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:6:p:2365-2389
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().