EconPapers    
Economics at your fingertips  
 

Complete real Kähler submanifolds

A. de Carvalho

Mathematische Nachrichten, 2024, vol. 297, issue 7, 2532-2542

Abstract: Let f:M2n→R2n+p$f: M^{2n}\rightarrow \mathbb {R}^{2n+p}$ denote an isometric immersion of a Kähler manifold with complex dimension n≥2$n\ge 2$ into Euclidean space with codimension p$p$. We show that generic rank conditions on the second fundamental form of a non‐minimal complete real Kähler submanifold f$f$ imply that f$f$ is a cylinder over a real Kähler submanifold g:N2p→R2p+p$g: N^{2p}\rightarrow \mathbb {R}^{2p+p}$.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202300369

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:7:p:2532-2542

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:297:y:2024:i:7:p:2532-2542