Complete real Kähler submanifolds
A. de Carvalho
Mathematische Nachrichten, 2024, vol. 297, issue 7, 2532-2542
Abstract:
Let f:M2n→R2n+p$f: M^{2n}\rightarrow \mathbb {R}^{2n+p}$ denote an isometric immersion of a Kähler manifold with complex dimension n≥2$n\ge 2$ into Euclidean space with codimension p$p$. We show that generic rank conditions on the second fundamental form of a non‐minimal complete real Kähler submanifold f$f$ imply that f$f$ is a cylinder over a real Kähler submanifold g:N2p→R2p+p$g: N^{2p}\rightarrow \mathbb {R}^{2p+p}$.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202300369
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:7:p:2532-2542
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().