Normalized solutions to nonlinear Schrödinger equations with competing Hartree‐type nonlinearities
Divyang Bhimani,
Tianxiang Gou and
Hichem Hajaiej
Mathematische Nachrichten, 2024, vol. 297, issue 7, 2543-2580
Abstract:
In this paper, we consider solutions to the following nonlinear Schrödinger equation with competing Hartree‐type nonlinearities, −Δu+λu=|x|−γ1*|u|2u−|x|−γ2*|u|2uinRN,$$\begin{equation*} -\Delta u + \lambda u={\left(|x|^{-\gamma _1} \ast|u|^2\right)} u - {\left(|x|^{-\gamma _2} \ast|u|^2\right)} u\quad \mbox{in} \,\, \mathbb {R}^N, \end{equation*}$$under the L2$L^2$‐norm constraint ∫RN|u|2dx=c>0,$$\begin{equation*} \int _{\mathbb {R}^N}|u|^2 \, dx=c>0, \end{equation*}$$where N≥1$N \ge 1$, 0
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202200443
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:7:p:2543-2580
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().