On rank 3 instanton bundles on P3$\mathbb {P}^3$
A. V. Andrade,
D. R. Santiago,
D. D. Silva and
L. C. S. Sobral
Mathematische Nachrichten, 2024, vol. 297, issue 8, 2814-2827
Abstract:
We investigate rank 3 instanton vector bundles on P3$\mathbb {P}^3$ of charge n$n$ and its correspondence with rational curves of degree n+3$n+3$. For n=2$n=2$, we present a correspondence between stable rank 3 instanton bundles and stable rank 2 reflexive linear sheaves of Chern classes (c1,c2,c3)=(−1,3,3)$(c_1,c_2,c_3)=(-1,3,3)$ and we use this correspondence to compute the dimension of the family of stable rank 3 instanton bundles of charge 2. Finally, we use the results above to prove that the moduli space of rank 3 instanton bundles on P3$\mathbb {P}^3$ of charge 2 coincides with the moduli space of rank 3 stable locally free sheaves on P3$\mathbb {P}^3$ of Chern classes (c1,c2,c3)=(0,2,0)$(c_1,c_2,c_3)=(0,2,0)$. This moduli space is irreducible, has dimension 16 and its generic point corresponds to a generalized't Hooft instanton bundle.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202200332
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:8:p:2814-2827
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().