Asymptotics for a parabolic problem of Kirchhoff type with singular critical exponential nonlinearity
Tahir Boudjeriou
Mathematische Nachrichten, 2024, vol. 297, issue 8, 2949-2969
Abstract:
The main objective of this paper is to characterize stable sets based on the asymptotic behavior of solutions as t$t$ goes to infinity for the following class of parabolic Kirchhoff equations: ut+∥u∥(θ−1)Ns(−Δ)N/ssu=λ|u|q−2uexpα0|u|NN−s|x|γinΩ,t>0,u=0inRN∖Ω,t>0,u(x,0)=u0(x)inΩ,$$\begin{eqnarray*} \hspace*{13pc}{\left\lbrace \def\eqcellsep{&}\begin{array}{llc}u_{t}+\Vert u\Vert ^{\frac{(\theta -1)N}{s}}(-\Delta)^{s}_{N/s}u=\frac{\lambda |u|^{q-2}u\exp {\left(\alpha _{0}|u|^{\frac{N}{N-s}}\right)}}{|x|^{\gamma }} &\text{in}\ &\Omega,\;t>0, \\ u =0 &\text{in} & \mathbb {R}^{N}\backslash \Omega,\;t > 0, \\ u(x,0)=u_{0}(x)& \text{in} &\Omega, \end{array} \right.} \end{eqnarray*}$$where ∥u∥Ns=∫R2N|u(x,t)−u(y,t)|N/s|x−y|2Ndxdy,$$\begin{equation*} \hspace*{7pc}\Vert u\Vert ^{\frac{N}{s}}=\int _{\mathbb {R}^{2N}}\frac{|u(x,t)-u(y,t)|^{N/s}}{|x-y|^{2N}}\,dxdy, \end{equation*}$$Ω⊂RN(N≥2)$\Omega \subset \mathbb {R}^N \, (N\ge 2)$ is a bounded domain with a Lipschitz boundary, 0∈Ω$0\in \Omega$, α0,λ>0$\alpha _{0},\lambda >0$, θ≥1$\theta \ge 1$, γ∈[0,N)$\gamma \in [0, N)$, q>Nθ/s$q>N\theta /s$, and (−Δ)N/ss$(-\Delta)_{N/s}^{s}$ is the fractional N/s$N/s$‐Laplacian operator, s∈(0,1)$s\in (0,1)$.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202200319
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:8:p:2949-2969
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().