EconPapers    
Economics at your fingertips  
 

Asymptotics for a parabolic problem of Kirchhoff type with singular critical exponential nonlinearity

Tahir Boudjeriou

Mathematische Nachrichten, 2024, vol. 297, issue 8, 2949-2969

Abstract: The main objective of this paper is to characterize stable sets based on the asymptotic behavior of solutions as t$t$ goes to infinity for the following class of parabolic Kirchhoff equations: ut+∥u∥(θ−1)Ns(−Δ)N/ssu=λ|u|q−2uexpα0|u|NN−s|x|γinΩ,t>0,u=0inRN∖Ω,t>0,u(x,0)=u0(x)inΩ,$$\begin{eqnarray*} \hspace*{13pc}{\left\lbrace \def\eqcellsep{&}\begin{array}{llc}u_{t}+\Vert u\Vert ^{\frac{(\theta -1)N}{s}}(-\Delta)^{s}_{N/s}u=\frac{\lambda |u|^{q-2}u\exp {\left(\alpha _{0}|u|^{\frac{N}{N-s}}\right)}}{|x|^{\gamma }} &\text{in}\ &\Omega,\;t>0, \\ u =0 &\text{in} & \mathbb {R}^{N}\backslash \Omega,\;t > 0, \\ u(x,0)=u_{0}(x)& \text{in} &\Omega, \end{array} \right.} \end{eqnarray*}$$where ∥u∥Ns=∫R2N|u(x,t)−u(y,t)|N/s|x−y|2Ndxdy,$$\begin{equation*} \hspace*{7pc}\Vert u\Vert ^{\frac{N}{s}}=\int _{\mathbb {R}^{2N}}\frac{|u(x,t)-u(y,t)|^{N/s}}{|x-y|^{2N}}\,dxdy, \end{equation*}$$Ω⊂RN(N≥2)$\Omega \subset \mathbb {R}^N \, (N\ge 2)$ is a bounded domain with a Lipschitz boundary, 0∈Ω$0\in \Omega$, α0,λ>0$\alpha _{0},\lambda >0$, θ≥1$\theta \ge 1$, γ∈[0,N)$\gamma \in [0, N)$, q>Nθ/s$q>N\theta /s$, and (−Δ)N/ss$(-\Delta)_{N/s}^{s}$ is the fractional N/s$N/s$‐Laplacian operator, s∈(0,1)$s\in (0,1)$.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202200319

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:8:p:2949-2969

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:297:y:2024:i:8:p:2949-2969