Periodic solutions of the parabolic–elliptic Keller–Segel system on whole spaces
Nguyen Thi Loan,
Thi Van Anh Nguyen,
Tran Van Thuy and
Pham Truong Xuan
Mathematische Nachrichten, 2024, vol. 297, issue 8, 3003-3023
Abstract:
In this paper, we investigate to the existence and uniqueness of periodic solutions for the parabolic–elliptic Keller–Segel system on whole spaces detailized by Euclidean space Rn(wheren⩾4)$\mathbb {R}^n\,\,(\hbox{ where }n \geqslant 4)$ and real hyperbolic space Hn(wheren⩾2)$\mathbb {H}^n\,\, (\hbox{where }n \geqslant 2)$. We work in framework of critical spaces such as on weak‐Lorentz space Ln2,∞(Rn)$L^{\frac{n}{2},\infty }(\mathbb {R}^n)$ to obtain the results for the Keller–Segel system on Rn$\mathbb {R}^n$ and on Lp2(Hn)$L^{\frac{p}{2}}(\mathbb {H}^n)$ for n
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202300311
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:8:p:3003-3023
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().