EconPapers    
Economics at your fingertips  
 

Periodic solutions of the parabolic–elliptic Keller–Segel system on whole spaces

Nguyen Thi Loan, Thi Van Anh Nguyen, Tran Van Thuy and Pham Truong Xuan

Mathematische Nachrichten, 2024, vol. 297, issue 8, 3003-3023

Abstract: In this paper, we investigate to the existence and uniqueness of periodic solutions for the parabolic–elliptic Keller–Segel system on whole spaces detailized by Euclidean space Rn(wheren⩾4)$\mathbb {R}^n\,\,(\hbox{ where }n \geqslant 4)$ and real hyperbolic space Hn(wheren⩾2)$\mathbb {H}^n\,\, (\hbox{where }n \geqslant 2)$. We work in framework of critical spaces such as on weak‐Lorentz space Ln2,∞(Rn)$L^{\frac{n}{2},\infty }(\mathbb {R}^n)$ to obtain the results for the Keller–Segel system on Rn$\mathbb {R}^n$ and on Lp2(Hn)$L^{\frac{p}{2}}(\mathbb {H}^n)$ for n

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202300311

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:8:p:3003-3023

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:297:y:2024:i:8:p:3003-3023