On the optimization of the first weighted eigenvalue of the fractional Laplacian
Mrityunjoy Ghosh
Mathematische Nachrichten, 2025, vol. 298, issue 10, 3251-3271
Abstract:
In this paper, we consider the minimization problem for the first eigenvalue of the fractional Laplacian with respect to the weight functions lying in the rearrangement classes of fixed weight functions. We prove the existence of minimizing weights in the rearrangement classes of weight functions satisfying some assumptions. Also, we provide characterizations of these minimizing weights in terms of the eigenfunctions. Furthermore, we establish various qualitative properties, such as Steiner symmetry, radial symmetry, foliated Schwarz symmetry, etc., of the minimizing weights and corresponding eigenfunctions.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.70036
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:10:p:3251-3271
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().