EconPapers    
Economics at your fingertips  
 

Hardy and BMO spaces associated with new Muckenhoupt‐type weights in the Bessel setting

Qingdong Guo, Ji Li and Dongyong Yang

Mathematische Nachrichten, 2025, vol. 298, issue 12, 3639-3685

Abstract: We introduce the Hardy spaces Hw1(R+)$H^{1}_{w}(\mathbb {R}_{+})$ with w$w$ in the new weights A∼p,λ$\widetilde{A}_{p,\lambda }$, 1≤p 0.$$\begin{equation*} \hspace*{50pt}\Delta _{\lambda }:=-x^{-2\lambda }\frac{d}{dx}x^{2\lambda }\frac{d}{dx},\qquad x\in {\mathbb {R}_{+}:=(0,\infty)},\,\lambda >0. \end{equation*}$$Then we establish equivalent characterizations of Hw1(R+)$H^{1}_{w}(\mathbb {R}_{+})$ via atoms and maximal functions. We also introduce the weighted BMO$\mathrm{BMO}$ space BMOw(R+)$\mathrm{BMO}_{w}(\mathbb {R}_{+})$ and establish the duality of Hw1(R+)$H^{1}_{w}(\mathbb {R}_{+})$ and BMOw(R+)$\mathrm{BMO}_{w}(\mathbb {R}_{+})$ for w∈A∼1,λ$w\in {\widetilde{A}_{1,\lambda }}$. As an application, we show a w$w$‐Carleson characterization of BMOw(R+)$\mathrm{BMO}_{w}(\mathbb {R}_{+})$ with w∈A∼1,λ$w\in {\widetilde{A}_{1,\lambda }}$ via the Poisson semigroup e−tΔλ$e^{-t\sqrt {\Delta _{\lambda }}}$.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.70054

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:12:p:3639-3685

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-12-13
Handle: RePEc:bla:mathna:v:298:y:2025:i:12:p:3639-3685