Hardy and BMO spaces associated with new Muckenhoupt‐type weights in the Bessel setting
Qingdong Guo,
Ji Li and
Dongyong Yang
Mathematische Nachrichten, 2025, vol. 298, issue 12, 3639-3685
Abstract:
We introduce the Hardy spaces Hw1(R+)$H^{1}_{w}(\mathbb {R}_{+})$ with w$w$ in the new weights A∼p,λ$\widetilde{A}_{p,\lambda }$, 1≤p 0.$$\begin{equation*} \hspace*{50pt}\Delta _{\lambda }:=-x^{-2\lambda }\frac{d}{dx}x^{2\lambda }\frac{d}{dx},\qquad x\in {\mathbb {R}_{+}:=(0,\infty)},\,\lambda >0. \end{equation*}$$Then we establish equivalent characterizations of Hw1(R+)$H^{1}_{w}(\mathbb {R}_{+})$ via atoms and maximal functions. We also introduce the weighted BMO$\mathrm{BMO}$ space BMOw(R+)$\mathrm{BMO}_{w}(\mathbb {R}_{+})$ and establish the duality of Hw1(R+)$H^{1}_{w}(\mathbb {R}_{+})$ and BMOw(R+)$\mathrm{BMO}_{w}(\mathbb {R}_{+})$ for w∈A∼1,λ$w\in {\widetilde{A}_{1,\lambda }}$. As an application, we show a w$w$‐Carleson characterization of BMOw(R+)$\mathrm{BMO}_{w}(\mathbb {R}_{+})$ with w∈A∼1,λ$w\in {\widetilde{A}_{1,\lambda }}$ via the Poisson semigroup e−tΔλ$e^{-t\sqrt {\Delta _{\lambda }}}$.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.70054
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:12:p:3639-3685
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().