Generalized fractional integral operators on Musielak–Orlicz–Morrey spaces of an integral form over metric measure spaces
Takao Ohno and
Tetsu Shimomura
Mathematische Nachrichten, 2025, vol. 298, issue 12, 3729-3756
Abstract:
In this paper, we discuss the boundedness of generalized fractional integral operators Iρ,τ$I_{\rho,\tau }$ on Musielak–Orlicz–Morrey spaces of an integral form LΦ,ω,θ1(X)$\mathcal {L}^{\Phi,\omega, \theta _1}(X)$ over bounded non‐doubling metric measure spaces X$X$, where both ρ$\rho$ and ω$\omega$ depend on x∈X$x \in X$. As an application, we give Sobolev‐type inequalities for multiphase functions Φ(x,t)=tp(x)+a(x)tq(x)+b(x)ts(x),x∈X,t≥0,$$\begin{equation*} \hspace*{4pc}\Phi (x,t) = t^{p(x)} + a(x) t^{q(x)}+ b(x) t^{s(x)}, \ x \in X, \ t \ge 0, \end{equation*}$$where p(·)$p(\cdot)$, q(·)$q(\cdot)$, and s(·)$s(\cdot)$ are log‐Hölder continuous, p(x)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.70064
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:12:p:3729-3756
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().