EconPapers    
Economics at your fingertips  
 

Generalized fractional integral operators on Musielak–Orlicz–Morrey spaces of an integral form over metric measure spaces

Takao Ohno and Tetsu Shimomura

Mathematische Nachrichten, 2025, vol. 298, issue 12, 3729-3756

Abstract: In this paper, we discuss the boundedness of generalized fractional integral operators Iρ,τ$I_{\rho,\tau }$ on Musielak–Orlicz–Morrey spaces of an integral form LΦ,ω,θ1(X)$\mathcal {L}^{\Phi,\omega, \theta _1}(X)$ over bounded non‐doubling metric measure spaces X$X$, where both ρ$\rho$ and ω$\omega$ depend on x∈X$x \in X$. As an application, we give Sobolev‐type inequalities for multiphase functions Φ(x,t)=tp(x)+a(x)tq(x)+b(x)ts(x),x∈X,t≥0,$$\begin{equation*} \hspace*{4pc}\Phi (x,t) = t^{p(x)} + a(x) t^{q(x)}+ b(x) t^{s(x)}, \ x \in X, \ t \ge 0, \end{equation*}$$where p(·)$p(\cdot)$, q(·)$q(\cdot)$, and s(·)$s(\cdot)$ are log‐Hölder continuous, p(x)

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.70064

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:12:p:3729-3756

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-12-13
Handle: RePEc:bla:mathna:v:298:y:2025:i:12:p:3729-3756