A pseudoparabolic equation with nonlocal pu(x,t)$p\left[u(x,t)\right]$ ‐ Laplace operator
Khonatbek Khompysh and
Sergey Shmarev
Mathematische Nachrichten, 2025, vol. 298, issue 12, 3832-3854
Abstract:
We study the Dirichlet problem for the pseudoparabolic equation perturbed with the p[u]$p[u]$‐Laplacian diffusion term, ut−γΔut−βdiv∇up[u]−2∇u=f(x,t),$$\begin{equation*} \hspace*{6pc}{u}_t - \gamma \Delta {u}_t -\beta \operatorname{div}{\left({\left|\nabla {u}\right|}^{p[{u}]-2} \nabla {u}\right)} ={f}({x},t), \end{equation*}$$where the argument of the exponent p[u]$p[{u}]$ depends on the sought solution: p[u]≡p(l(u)),l(u)=∫Ωg(x,u(x,t))dx$$\begin{equation*} \hspace*{6.5pc}p[{u}]\equiv p(l({u})), \quad l(u)=\int \limits _\Omega g(x,u(x,t))\, d{x} \end{equation*}$$with a given function g(·,·)$g(\cdot,\cdot)$. Under suitable conditions on the problem data, we prove the existence and uniqueness of a weak solution. It is shown that the solutions of the pseudoparabolic problem converge to the solution of the corresponding parabolic problem as γ→0$\gamma \rightarrow 0$.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.70069
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:12:p:3832-3854
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().