EconPapers    
Economics at your fingertips  
 

A pseudoparabolic equation with nonlocal pu(x,t)$p\left[u(x,t)\right]$ ‐ Laplace operator

Khonatbek Khompysh and Sergey Shmarev

Mathematische Nachrichten, 2025, vol. 298, issue 12, 3832-3854

Abstract: We study the Dirichlet problem for the pseudoparabolic equation perturbed with the p[u]$p[u]$‐Laplacian diffusion term, ut−γΔut−βdiv∇up[u]−2∇u=f(x,t),$$\begin{equation*} \hspace*{6pc}{u}_t - \gamma \Delta {u}_t -\beta \operatorname{div}{\left({\left|\nabla {u}\right|}^{p[{u}]-2} \nabla {u}\right)} ={f}({x},t), \end{equation*}$$where the argument of the exponent p[u]$p[{u}]$ depends on the sought solution: p[u]≡p(l(u)),l(u)=∫Ωg(x,u(x,t))dx$$\begin{equation*} \hspace*{6.5pc}p[{u}]\equiv p(l({u})), \quad l(u)=\int \limits _\Omega g(x,u(x,t))\, d{x} \end{equation*}$$with a given function g(·,·)$g(\cdot,\cdot)$. Under suitable conditions on the problem data, we prove the existence and uniqueness of a weak solution. It is shown that the solutions of the pseudoparabolic problem converge to the solution of the corresponding parabolic problem as γ→0$\gamma \rightarrow 0$.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.70069

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:12:p:3832-3854

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-12-13
Handle: RePEc:bla:mathna:v:298:y:2025:i:12:p:3832-3854