EconPapers    
Economics at your fingertips  
 

Multi‐bump solutions for the nonlinear magnetic Schrödinger equation with logarithmic nonlinearity

Jun Wang and Zhaoyang Yin

Mathematische Nachrichten, 2025, vol. 298, issue 1, 328-355

Abstract: In this paper, we study the following nonlinear magnetic Schrödinger equation with logarithmic nonlinearity −(∇+iA(x))2u+λV(x)u=|u|q−2u+ulog|u|2,u∈H1(RN,C),$$\begin{equation*} \hspace*{24pt}-(\nabla +\text{i}A(x))^2u+\lambda V(x)u =|u|^{q-2}u+u\log |u|^2,\ u\in H^1(\mathbb {R}^N,\mathbb {C}), \end{equation*}$$where the magnetic potential A∈Lloc2RN,RN$A \in L_{l o c}^2\left(\mathbb {R}^N, \mathbb {R}^N\right)$, 2 0$2 0$ is a parameter and the nonnegative continuous function V:RN→R$V: \mathbb {R}^N \rightarrow \mathbb {R}$ has the deepening potential well. Using the variational methods, we obtain that the equation has at least 2k−1$2^k-1$ multi‐bump solutions when λ>0$\lambda >0$ is large enough.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202400134

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:1:p:328-355

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:298:y:2025:i:1:p:328-355