Decay character and global existence for weakly coupled system of semilinear σ$\sigma$‐evolution damped equations with time‐dependent damping
Cung The Anh,
Phan Duc An and
Pham Trieu Duong
Mathematische Nachrichten, 2025, vol. 298, issue 2, 478-510
Abstract:
In this article, we investigate the existence and decay rate of the global solution to the coupled system of semilinear structurally damped σ$\sigma$‐evolution equations with time‐dependent damping in the so‐called effective cases utt+(−Δ)σ1u+b1(t)(−Δ)δ1ut=|vt|p,vtt+(−Δ)σ2v+b2(t)(−Δ)δ2vt=|ut|q.$$\begin{equation*} \hspace*{7pc}{\begin{cases} u_{t t}+(-\Delta)^{\sigma _1} u+b_1(t) (-\Delta)^{\delta _1} u_t=|v_t|^p, \\ v_{t t}+(-\Delta)^{\sigma _2} v+b_2(t) (-\Delta)^{\delta _2} v_t=|u_t|^q. \end{cases}} \end{equation*}$$We obtain conditions for the existence and the decay estimates of the global (in time) solution that are expressed in terms of the decay character of the initial data u0(x)=u(0,x),v0(x)=v(0,x)$u_0(x)=u(0, x), \nobreakspace v_0(x)=v(0, x)$ and u1(x)=ut(0,x),v1(x)=vt(0,x)$u_1(x)=u_t(0, x),\nobreakspace v_1(x)=v_t(0, x)$. Furthermore, the blow‐up results for solutions to the semilinear problem also presented.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202400243
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:2:p:478-510
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().