Partial Hölder regularity for asymptotically convex functionals with borderline double‐phase growth
Wenrui Chang and
Shenzhou Zheng
Mathematische Nachrichten, 2025, vol. 298, issue 3, 1018-1040
Abstract:
We study partial Hölder regularity of the local minimizers u∈Wloc1,1(Ω;RN)$u\in W_{\mathrm{loc}}^{1,1}(\Omega;{\mathbb {R}^N})$ with N≥1$N\ge 1$ to the integral functional ∫ΩF(x,u,Du)dx$\int _\Omega F(x,u,Du)\,dx$ in a bounded domain Ω⊂Rn$\Omega \subset \mathbb {R}^n$ for n≥2$n\ge 2$. Under the assumption of asymptotically convex to the borderline double‐phase functional ∫Ωb(x,u)|Du|p+a(x)|Du|plog(e+|Du|)dx,$$\begin{equation*} \hspace*{67pt}\int _\Omega b (x,u) {\left({|Du{|^p} + a(x)|Du{|^p}\log (e + |Du|)} \right)} \,dx, \end{equation*}$$where b(x,u)$b(x,u)$ satisfies VMO in x$x$ and is continuous in u$u$, respectively, and a(x)$a(x)$ is a strongly log‐Hölder continuous function, we prove that the local minimizer of such a functional is locally Hölder continuous with an explicit Hölder exponent in an open set Ω0⊂Ω$ \Omega _0 \subset \Omega$ with Hn−p−εΩ∖Ω0=0$\mathcal {H}^{n-p-\varepsilon }\left(\Omega \backslash \Omega _0\right)=0$ for some small ε>0$ \varepsilon >0$, where Hs$\mathcal {H}^{s}$ denotes s$s$‐dimensional Hausdorff measure.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202400388
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:3:p:1018-1040
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().