EconPapers    
Economics at your fingertips  
 

Partial Hölder regularity for asymptotically convex functionals with borderline double‐phase growth

Wenrui Chang and Shenzhou Zheng

Mathematische Nachrichten, 2025, vol. 298, issue 3, 1018-1040

Abstract: We study partial Hölder regularity of the local minimizers u∈Wloc1,1(Ω;RN)$u\in W_{\mathrm{loc}}^{1,1}(\Omega;{\mathbb {R}^N})$ with N≥1$N\ge 1$ to the integral functional ∫ΩF(x,u,Du)dx$\int _\Omega F(x,u,Du)\,dx$ in a bounded domain Ω⊂Rn$\Omega \subset \mathbb {R}^n$ for n≥2$n\ge 2$. Under the assumption of asymptotically convex to the borderline double‐phase functional ∫Ωb(x,u)|Du|p+a(x)|Du|plog(e+|Du|)dx,$$\begin{equation*} \hspace*{67pt}\int _\Omega b (x,u) {\left({|Du{|^p} + a(x)|Du{|^p}\log (e + |Du|)} \right)} \,dx, \end{equation*}$$where b(x,u)$b(x,u)$ satisfies VMO in x$x$ and is continuous in u$u$, respectively, and a(x)$a(x)$ is a strongly log‐Hölder continuous function, we prove that the local minimizer of such a functional is locally Hölder continuous with an explicit Hölder exponent in an open set Ω0⊂Ω$ \Omega _0 \subset \Omega$ with Hn−p−εΩ∖Ω0=0$\mathcal {H}^{n-p-\varepsilon }\left(\Omega \backslash \Omega _0\right)=0$ for some small ε>0$ \varepsilon >0$, where Hs$\mathcal {H}^{s}$ denotes s$s$‐dimensional Hausdorff measure.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202400388

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:3:p:1018-1040

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:bla:mathna:v:298:y:2025:i:3:p:1018-1040