EconPapers    
Economics at your fingertips  
 

Lp$L^p$‐boundedness properties for some harmonic analysis operators defined by resolvents for a Laplacian with drift in Euclidean spaces

Jorge J. Betancor, Juan C. Fariña and Lourdes Rodríguez‐Mesa

Mathematische Nachrichten, 2025, vol. 298, issue 3, 849-870

Abstract: We consider the Laplacian with drift in Rn$\mathbb {R}^n$ defined by Δν=∑i=1n(∂2∂xi2+2νi∂∂xi)$\Delta _\nu = \sum _{i=1}^n(\frac{\partial ^2}{\partial x_i^2} + 2 \nu _i\frac{\partial }{\partial {x_i}})$ where ν=(ν1,…,νn)∈Rn∖{0}$\nu =(\nu _1,\ldots ,\nu _n)\in \mathbb {R}^n\setminus \lbrace 0\rbrace$. This operator is self‐adjoint with respect to the locally doubling measure dμν(x)=e2⟨ν,x⟩dx$d\mu _\nu (x)=e^{2\langle \nu,x\rangle }dx$. We analyze the boundedness on Lp(Rn,μν)$L^p(\mathbb {R}^n,\mu _\nu)$, 1≤p 0={tk∂tk(I−tΔν)−M}t>0$\lbrace A^k_{\nu,M,t}\rbrace _{t>0}=\lbrace t^k\partial ^k_t(I-t\Delta _\nu)^{-M}\rbrace _{t>0}$, where M>0$M>0$ and k∈N$k\in \mathbb {N}$.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202400212

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:3:p:849-870

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:bla:mathna:v:298:y:2025:i:3:p:849-870