Lp$L^p$‐boundedness properties for some harmonic analysis operators defined by resolvents for a Laplacian with drift in Euclidean spaces
Jorge J. Betancor,
Juan C. Fariña and
Lourdes Rodríguez‐Mesa
Mathematische Nachrichten, 2025, vol. 298, issue 3, 849-870
Abstract:
We consider the Laplacian with drift in Rn$\mathbb {R}^n$ defined by Δν=∑i=1n(∂2∂xi2+2νi∂∂xi)$\Delta _\nu = \sum _{i=1}^n(\frac{\partial ^2}{\partial x_i^2} + 2 \nu _i\frac{\partial }{\partial {x_i}})$ where ν=(ν1,…,νn)∈Rn∖{0}$\nu =(\nu _1,\ldots ,\nu _n)\in \mathbb {R}^n\setminus \lbrace 0\rbrace$. This operator is self‐adjoint with respect to the locally doubling measure dμν(x)=e2⟨ν,x⟩dx$d\mu _\nu (x)=e^{2\langle \nu,x\rangle }dx$. We analyze the boundedness on Lp(Rn,μν)$L^p(\mathbb {R}^n,\mu _\nu)$, 1≤p 0={tk∂tk(I−tΔν)−M}t>0$\lbrace A^k_{\nu,M,t}\rbrace _{t>0}=\lbrace t^k\partial ^k_t(I-t\Delta _\nu)^{-M}\rbrace _{t>0}$, where M>0$M>0$ and k∈N$k\in \mathbb {N}$.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202400212
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:3:p:849-870
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().