EconPapers    
Economics at your fingertips  
 

A nonlinear characterization of stochastic completeness of graphs

Marcel Schmidt and Ian Zimmermann

Mathematische Nachrichten, 2025, vol. 298, issue 3, 925-943

Abstract: We study nonlinear Schrödinger operators on graphs. We construct minimal nonnegative solutions to corresponding semilinear elliptic equations and use them to introduce the notion of stochastic completeness at infinity in a nonlinear setting. We provide characterizations for this property in terms of a semilinear Liouville theorem. It is employed to establish a nonlinear characterization for stochastic completeness, which is a graph version of a recent result on Riemannian manifolds.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202400436

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:3:p:925-943

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:bla:mathna:v:298:y:2025:i:3:p:925-943