EconPapers    
Economics at your fingertips  
 

Reducibility of ultra‐differentiable quasi‐periodic linear systems

Xiangyuan Zhang and Dongfeng Zhang

Mathematische Nachrichten, 2025, vol. 298, issue 5, 1482-1495

Abstract: In ultra‐differentiable classes, this paper studies the reducibility of the quasi‐periodic linear system ẋ=(A+εQ(t))x,x∈Rd$\dot{x}=(A+\varepsilon Q(t))x,x\in \mathbb {R}^{d}$, where A$A$ is a constant matrix with different eigenvalues λ=(λ1,λ2,…,λd)$\lambda =(\lambda _{1},\lambda _{2},\ldots,\lambda _{d})$, Q(t)$Q(t)$ is a ultra‐differentiable quasi‐periodic matrix with r$r$ basic frequencies ω=(ω1,ω2,…,ωr)$\omega =(\omega _{1},\omega _{2},\ldots,\omega _{r})$ and ε$\varepsilon$ is a small perturbation parameter. Suppose that the set formed by the eigenvalues of A and the basic frequencies of Q satisfies a non‐resonant condition. Then, it is proved that the linear system can be conjugated to a constant system by a quasi‐periodic change of variables.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202300122

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:5:p:1482-1495

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-05-11
Handle: RePEc:bla:mathna:v:298:y:2025:i:5:p:1482-1495