Nonlocal problem with critical exponential nonlinearity of the convolution type: A non‐resonant case
Suman Kanungo and
Pawan Kumar Mishra
Mathematische Nachrichten, 2025, vol. 298, issue 5, 1578-1616
Abstract:
In this paper, we study the following class of weighted Choquard equations: −Δu=λu+∫ΩQ(|y|)F(u(y))|x−y|μdyQ(|x|)f(u)inΩandu=0on∂Ω,$$\begin{align*} -\Delta u =\lambda u + {\left(\int \limits _\Omega \frac{Q(|y|)F(u(y))}{|x-y|^\mu }dy\right)} Q(|x|)f(u) \nobreakspace \nobreakspace \textrm {in}\nobreakspace \nobreakspace \Omega \nobreakspace \nobreakspace \text{and}\nobreakspace \nobreakspace u=0\nobreakspace \nobreakspace \textrm {on}\nobreakspace \nobreakspace \partial \Omega, \end{align*}$$where Ω⊂R2$\Omega \subset \mathbb {R}^2$ is a bounded domain with smooth boundary, μ∈(0,2)$\mu \in (0,2)$ and λ>0$\lambda >0$ is a parameter. We assume that f$f$ is a real‐valued continuous function satisfying critical exponential growth in the Trudinger–Moser sense, and F$F$ is the primitive of f$f$. Let Q$Q$ be a positive real‐valued continuous weight, which can be singular at zero. Our main goal is to prove the existence of a nontrivial solution for all parameter values except when λ$\lambda$ coincides with any of the eigenvalues of the operator (−Δ,H01(Ω))$(-\Delta, H^1_0(\Omega))$.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202400383
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:5:p:1578-1616
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().